



Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech / (Full Time) - END SEMESTER EXAMINATIONS, APRIL/MAY 2024  
(COMMON TO MANUFACTURING, INDUSTRIAL, MINING, AERONAUTICAL, AUTOMOBILE, RPT AND PRODUCTION ENGINEERING)

**II SEMESTER**  
**PH5251- MATERIALS SCIENCE**  
**(Regulation 2019)**

Time: 3 hours

**(Answer all questions)**

**Max.Marks: 100**

|      |                                                                                                                                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------|
| CO 1 | Understand the basics of crystallography and its importance in materials properties                                                    |
| CO 2 | Understand the significance of dislocations, strengthening mechanisms, and tensile, creep, hardness and fracture behavior of materials |
| CO 3 | Gain knowledge on binary phase diagrams, and also will be able to determine the phase composition and phase amount.                    |
| CO 4 | Understand about the Fe-C system and various microstructures in it, and also about various ferrous and non-ferrous alloys.             |
| CO 5 | Get adequate understanding on the preparation, properties and applications of ceramics, composites and nanomaterials                   |

**BL - Bloom's Taxonomy**

Levels (L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analyzing, L5 - Evaluating, L6 - Creating)

**PART- A (10 x 2 = 20 Marks)**

| Q. No | QUESTIONS                                                                                      | Marks | CO | BL        |
|-------|------------------------------------------------------------------------------------------------|-------|----|-----------|
| 1.    | Sketch the atomic packing of (101) and (111) planes for the FCC crystal structure.             | 2     | 1  | <u>L3</u> |
| 2.    | Define polymorphism with an example                                                            | 2     | 1  | <u>L1</u> |
| 3.    | List major differences between twinning mechanism and deformation by slip in materials.        | 2     | 2  | <u>L3</u> |
| 4.    | Specify the conditions under which creep occurs in solid materials.                            | 2     | 2  | <u>L4</u> |
| 5.    | Differentiate isomorphous system and eutectic system with an example.                          | 2     | 3  | <u>L4</u> |
| 6.    | Express the criteria for the number of phases in a metal alloy system which is at equilibrium. | 2     | 3  | <u>L5</u> |
| 7.    | Compare the mechanical properties of pure copper with their alloys.                            | 2     | 4  | <u>L3</u> |
| 8.    | Which is more stable, the austenitic or the spheroiditic microstructure? Why?                  | 2     | 4  | <u>L5</u> |
| 9.    | What are carbon-carbon composites?                                                             | 2     | 5  | <u>L1</u> |
| 10.   | State the principle of transmission electron microscopy.                                       | 2     | 5  | <u>L2</u> |

**PART- B (5x 13 = 65 Marks)**

| Q. No     | Questions                                                                                                                                                                                                     | Marks  | CO | BL        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----------|
| 11(a)     | i. Derive linear density and planar density expressions for BCC (100) and (110) and (111) planes in terms of the atomic radius.<br>ii. Derive the atomic packing factor for HCP structure.                    | 9<br>4 | 1  | <u>L3</u> |
| <b>OR</b> |                                                                                                                                                                                                               |        |    |           |
| 11(b)     | i. Explain edge and screw dislocation motions and cite the relative Burgers vector-dislocation line orientations for edge, screw, and mixed dislocations.<br>ii. Brief the kinetics of phase transformations. | 9<br>4 | 1  | <u>L3</u> |

|       |                                                                                                                                                                                                                                                            |        |   |    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 12(a) | i. Explain elastic and plastic deformations by plotting a stress-strain curve and define modulus of elasticity proportional limit, yield strength and tensile strength of brittle and ductile materials.<br>ii. Write notes on slip systems with examples. | 9<br>4 | 2 | L4 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

**OR**

|       |                                                                                                                                                                                                                                        |        |   |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 12(b) | i. Derive the Griffiths equation and detail the Griffith Theory of Brittle Fracture. Explain the fracture of ductile materials.<br>ii. Explain the mechanism of creep and a creep plot for some material with respect to loading time. | 9<br>4 | 2 | L4 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 13(a) | i. Construct a phase Diagram of Cu-Ni alloy of some composition is slowly heated from a temperature of 1300°C (2370°F), and that is at equilibrium and explain the phases present - from the location of the temperature - composition point on the phase diagram and phase composition for the two-phase situation by employing a horizontal tie line.<br>ii. Write the invariant reactions involved in the Pb-Sn phase diagram for either heating or cooling. | 9<br>4 | 3 | L4 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

**OR**

|       |                                                                                                                                                                                                                                             |        |   |    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 13(b) | i. Construct a phase Diagram of Pb (30 wt %) - Sn (70 wt %) alloy which is at equilibrium, and explain the microstructural changes involved during cooling.<br>ii. Differentiate hypoeutectic and hypereutectic components in steel alloys. | 9<br>4 | 3 | L4 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

|       |                                                                                                                                                                                                                                                                  |        |   |    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 14(a) | i. For a given composition of a Fe-FeC alloy containing between 0.022 wt% C and 2.14 wt% C. Construct a phase diagram and explain the microstructural changes involved during cooling.<br>ii. List titanium alloys with its composition and give its properties. | 9<br>4 | 4 | L5 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

**OR**

|       |                                                                                                                                                                                                                            |        |   |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 14(b) | i. Construct an isothermal transformation (T-T-T) diagram for eutectoid steel and explain pearlitic, bainitic, and martensitic transformations.<br>ii. What is the function of alloying elements in steels? Give examples. | 9<br>4 | 4 | L5 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

|       |                                                                                                                                                                                                                                          |        |   |    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 15(a) | i. What are the advantages of composites over engineering alloys? Classify composites and explain the role of matrix and fiber in fiber reinforced composites.<br>ii. What are ceramics? Classify ceramics based on their functionality. | 9<br>4 | 5 | L1 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

**OR**

|       |                                                                                                                                                                         |        |   |    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|
| 15(b) | i. Explain carbon nanotubes and mention their properties and applications.<br>ii. Explain the synthesis of nanomaterials using chemical vapour deposition (CVD) method. | 9<br>4 | 5 | L1 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----|

**PART- C (1 x 15 = 15 Marks)**

| Q. No | Questions                                                                                                                                                                                                                      | Marks  | CO  | BL |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|----|
| 16    | i. Describe the strengthening mechanisms and explain how dislocations are involved in each of the strengthening techniques.<br>ii. Explain the instrumentation and working of scanning electron microscopy with a neat sketch. | 9<br>6 | 2/5 | L2 |

